If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+19x+17=0
a = 3; b = 19; c = +17;
Δ = b2-4ac
Δ = 192-4·3·17
Δ = 157
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{157}}{2*3}=\frac{-19-\sqrt{157}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{157}}{2*3}=\frac{-19+\sqrt{157}}{6} $
| (2x-5)+(x+9)+(5x)=180 | | −4y+2=−2(4y+11) | | 1026=6(x+19) | | (2m-7)(m-7)=0 | | 6m-1/2=-4/5 | | 214=142-u | | t/0.1=(-18) | | 59+5x-6=13x-3 | | XxX=5 | | -2(x+4)=8x+24 | | -20=x/5-5 | | -10+5+2=y | | 2X^3+15x-8^3=0 | | m/6-5=8 | | 3a+5-2a=-10 | | 2X^2+15x-8^x=0 | | 2X^2+15x-8^3=0 | | -10×-1+2=y | | 4s=7s+6 | | 8m-1=6m+11 | | -10+1+2=y | | 2(3x+4)=-35 | | 2x+12=7x+8 | | 3t+7=t-3 | | -9x+2x=-49 | | 3g-5=2g-8 | | 1/2x=26=15 | | -10+0+2=y | | c−1=2 | | -10-1+2=y | | +2x+6+2x=+x-3x-12 | | -6+17=3y |